Dark data is data which is acquired through various computer network operations but not used in any manner to derive insights or for decision making. The ability of an organisation to Data collection can exceed the throughput at which it can Data analysis. In some cases the organisation may not even be aware that the data is being collected. IBM estimate that roughly 90 percent of data generated by and analog-to-digital conversions never get used.
In an industrial context, dark data can include information gathered by sensors and .
Organizations retain dark data for a multitude of reasons, and it is estimated that most companies are only analyzing 1% of their data. Often it is stored for regulatory compliance and record keeping. Some organizations believe that dark data could be useful to them in the future, once they have acquired better analytic and business intelligence technology to process the information. Because storage is inexpensive, storing data is easy. However, storing and securing the data usually entails greater expenses (or even risk) than the potential return profit.
In academic discourse, the term dark data was essentially coined by Bryan P. Heidorn. He uses it to describe research data, especially from the long tail of science (the many, small research projects), which are not or no longer available for research because they disappear in a drawer without adequate data management.Heidorn, P. Bryan. "Shedding light on the dark data in the long tail of science."
A lot of unused data is very valuable, and would be used if it could be; but is blocked because it is in formats that are difficult to process, categorise, identify, and analyse. Often the reason that business does not use their dark data is because of the amount of resources it would take and the difficulty of having that data analysed. In other words, the data is "dark" not because it is not used, but because it cannot (feasibly or affordably) be used, given its poor representation.
There are many data representations that can make data much more accessible for automation. However, a great deal of information lacks any such identification of information items or relationships; and much more loses it during "downhill" conversion such as saving to page-oriented representations, printing, scanning, or faxing. The journey back "uphill" can be costly.
According to Computer Weekly, 60% of organisations believe that their own business intelligence reporting capability is "inadequate" and 65% say that they have "somewhat disorganised content management approaches".
The continuous storage of dark data can put an organisation at risk, especially if this data is sensitive. In the case of a breach, this can result in serious repercussions. These can be financial, legal and can seriously hurt an organisation's reputation. For example, a breach of private records of customers could result in the stealing of sensitive information, which could result in identity theft. Another example could be the breach of the company's own sensitive information, for example relating to research and development. These risks can be mitigated by assessing and auditing whether this data is useful to the organisation, employing strong encryption and security and finally, if it is determined to be discarded, then it should be discarded in a way that it becomes unretrievable.
/ref>
Analysis
Relevance
Storage
Future
|
|